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We investigate the collapse transition of lattice trees with nearest neighbor 
attraction in two and three dimensions. Two methods are used: ( I ) A stochastic 
optimization process of the Robbins-Monro type, which is designed solely to 
locate the maximum value of the specific heat; and (2) umbrella sampling, 
which is designed to sample data over a wide temperature range, as well as to 
combat the quasiergodicity of Metropolis algorithms in the collapsed phase. We 
find good evidence that the transition is second order with a divergent specific 
heat, and that the divergence of the specific heat coincides with the metric 
collapse. 

KEY WORDS:  Lattice trees, collapse transition, scaling and crossover 
behavior: Robbins-Monro algorithm; umbrella sampling Monte Carlo. 

1. I N T R O D U C T I O N  

Polymers in solution are believed to undergo a collapse transition driven 
by solvent quality. The transition may be characterized by measuring a 
metric quantity associated with the polymers, such as the root mean square 
radius of gyration Rc~. In the "good solvent" regime, or the "expanded" 
phase, one expects that R e  ~ M",  where M is the molecular mass of the 
polymer, and v is the metric  exponent  which describes the scaling of Re 
with increasing mass. On the other hand, beyond the collapse transition, it 
is expected that RG ~ M ~/a, where d is the dimension, so that the polymer 
is a compact or solid object. The change in scaling behavior occurs at the 
O-point, which is believed to be a tricritical point in the phase diagram of 
the collapsing polymer, tt 3~ 
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There  is numerical  evidence that  b ranched  polymers  undergo  a 
collapse transit ion of  the kind described aboveJ  4 ~21 Acyclic b ranched  
polymers  are modeled as trees (weakly)  embedded  in a lattice with a 
nearest  ne ighbor  contac t  potent ial  between " m o n o m e r s "  which are nearest  
neighbors  in the lattice, but  not  in the tree (see Fig. 1 ). This is the so-called 
t_modePt~. 13~ with par t i t ion function 

~,,(fl) = y" t,,(c) e//'' (1.1) ,:'~>0 
where t,,(c) is the n u m b e r  of  trees with n vertices and c nearest  ne ighbor  
contacts.  The  "contact  chemical  potent ia l"  is ft. (Since fl m a y  be imagined 
to be p ropor t iona l  to the inverse of  tempera ture ,  we will refer to it as the 
"inverse tempera ture ." )  The interact ion between m o n o m e r s  is a t t ract ive if 
fl > 0 and repulsive if fl < 0. The free energy per  m o n o m e r  of  the tree can 
be defined a s  ct31 

F,, ( f l )=l  log ~,(fl) (1.2) r/ 
The specific heat  per  m o n o m e r  is then 

d~-F,,(fl) 
C , , ( f l ) -  dfl 2 (1.3) 

and we will s tudy it to determine if there is a t he rmodynamic  transi t ion 
which can be associated with a metric  collapse in trees, as suggested, for 

I . . . .  

I __ 

Fig. I. A tree in the square lattice with 21 vertices Iblack dots). 20 edges Isolid lines), and 
seven contacts (dotted lines). 
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example, in ref. 14 and 15. Available numerical data strongly support the 
association of a thermodynamic transition with the collapse; this includes 
the transfer matrix calculations by Derrida and Herrmann (4) for animals, 
and exact enumeration studies by Gaunt  and Flesia ~~ ~ ) fo r  trees. These 
results were based on exact calculations, which limits the studies to small 
trees. 

In this paper we revisit this model numerically, and in particular we 
seek to collect data on large trees in order to characterize the thermo- 
dynamic and metric behavior of lattice trees with nearest neighbor con- 
tacts. A cut-and-paste Monte Carlo algorithm for simulating trees in the 
hypercubic lattice ~6) is adapted in two ways for this purpose. In the first 
instance, a stochastic optimization algorithm of the Robbins-Monro type 
is used with the cut-and-paste algorithm to determine the location and 
height of the peak in the specific heat with increasing n. The location of this 
peak, and its height can be used together with scaling arguments to deter- 
mine the location of the critical point in the n ~ ~ limit. Second, we use 
umbrella sampling techniques (~7) to study the dependence of the mean 
square radius of gyration as a function of fl over a wide range of fl; the 
collapse transition is characterized physically by a sudden change in the 
metric properties of the tree. Should the change in metric properties agree 
with the position of the peak in the heat capacity, which also increases with 
n, then we have strong evidence that the collapse transition is a second- 
order transition with a divergent specific heat characterized by both ther- 
modynamic and metric properties. (In other words, the thermodynamic 
transition corresponds with the metric collapse, and is not driven by some 
other internal transition.) 

This paper is organized as follows: In Section 2 we discuss some elemen- 
tary results involving lattice trees. In Section 3 we discuss the Robbins- 
Monro algorithm and its implementation and we present numerical results 
obtained using this algorithm. In Section 4 we introduce umbrella sampling 
and study the collapse of lattice trees using this technique. We conclude the 
paper in Section 5 with a number of observations and conclusions. 

2. ELEMENTARY CONSIDERATIONS 

Equation (1.1) is the partition function of our model, with an 
associated reduced free energy per monomer defined by (1.2). Its n ~ oo 
limit, the limiting reduced free energy (per monomer) ~ (fl), is defined by 

~ ( ] ? ) =  lim F,,(fl) (2.1) 
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Madras, et aL (~3) proved that the limit in (2.1) exists for - c o  ~< fl < oo, and 
is monotone nondecreasing, convex, and continuous for - c~ < fl < oo. Any 
nonanatyticity in ~ (fl) at an inverse temperature fl,. is defined to be a ther- 
m o d y n a m i c  phase  transition. Such a phase transition is f i r s t  order if ~-(fl) 
has a discontinuous first derivative at tic, and is second  order if it has a con- 
tinuous first derivative at fl,. but a discontinuous second derivative. At the 
present time, there is no rigorous proof of a nonanalyticity in ~ ( f l ) .  (See 
refs. [ 18-20] for a discussion of the free energies of trees and animals.) 
Nonanalyticities in limiting reduced free energies have been proven only for 
directed walk models (z~" _~2) and a directed animal model/23' z41 These results 
did not indicate the order of the internal transition(s) associated with the 
non-analyticities. 

In the vicinity of a second-order transition one may apply nonrigorous 
(but very powerful) scaling arguments to define a set of scaling exponents 
which determines the universality class of the transition. In addition, the 
scaling assumptions will be very helpful in determining the location of the 
transition numerically. The following scaling arguments for collapse transi- 
tions are due to De'BeU and Whittington t25~ (see also ref. 26). The starting 
point is the reduced free energy per monomer of the finite system given by 
equation (1.2). Then, from (2.1), 

Z,,( fl } = e ~ ~ /s} '' + ~''~ (2.2) 

Let the critical value of fl be denoted by tic; and let r = ( f l , . - f l ) / f l , . .  For r 
small (close to the transition), the singular part of the limiting free energy 
is expected to behave as 

-~Sing(T) ='F z-~', "t '~0 (2.3) 

where 0c is the "specific heat exponent.". If ~ > 0, then this is associated with 
a divergence in the specific heat as the critical point is approached; if 0c < 0, 
then it is associated with a cusp in the specific heat. Equation (2.3) applies 
only to the limiting free energy; for finite values of n we must modify it to 
take into account finite-size effects. A suitable scaling ansatz is 

F,,([3) ~ r z - ~ f ( n r l / ~ )  (2.4) 

where ~ is a "crossover exponent" which relates the fugacity fl to n, and 
f ( x )  is a scaling function which relates F,,(13) to the limiting free energy. 
Moreover, f ( x )  is finite and f ( x )  --* 1 as x ~  m. Other properties o f f ( x )  
may be determined from those of F,,(fl) and ~ ( f l ) ,  defined in Eq. (2.1). 
Defining g ( x ~ ) = x ( Z - ~ ) ~ f ( x ) ,  in (2.4), we obtain 

F,,( fl) ~ n - , ~ 2 -  ~,~g(n,~r) (2.5) 
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The specific heat  (per m o n o m e r )  is defined by Eq. (1.3); taking the second 
derivat ive of  (2.5) with respect to fl for fixed n gives 

C,,(fl) ~ nr ) (2.6) 

Let r,, be that  value of  r for which C,, is a m a x i m u m  ( that  is, where 
dg"/dx = 0), and let H,, be the m a x i m u m  value of  C,, (with r = r,,). Then  we 
conclude from (2.6) that  

H,, ~ , ' ~  (2.7) 

and 

r,, ~ n  -~ (2.8) 

Equa t ions  (2.7) and  (2.8) have three unknown  parameters ,  ~, 0~, and tic, so 
that  compu t ing  H,, and r,, is not  enough to solve for these unknowns.  
However ,  hyperscal ing relates ~ and ~b th rough  2 -  ~ = lab, which together  
with Eqs. (2.7) and (2.8) can be used to est imate ~, c~, and fl,..14.7. ~ . 2  

However ,  even if we were to present  convincing numerical  evidence 
that  the scaling law (2.4) holds (with suitable choices of  ~b, e, and tic), and 
tha t  H,, and r,, scale as in (2.7) and (2.8), it still would no t  necessarily 
follow tha t  this fl,~ cor responds  to the collapse transit ion, or  even that  a 
collapse t ransi t ion exists at all in this model.  Fo r  it is possible that  this 
fl,. cor responds  to an internal second-order  t ransi t ion tha t  has noth ing  
wha tsoever  to do with collapse of  the polymer.  The  not ion of  collapse is 
a metric notion;  it is observed physically by a change in the scaling 
exponents  associated with a metr ic  quanti ty,  such as the  root  mean  square 
radius of  gyrat ion.  A necessary second step is thus to s tudy a metric  quan-  
tity and to co r robora t e  the results f rom the t he rmodynamic  da ta  by 
il lustrating a sudden change in the metric  proper t ies  of  the branched  
po lymer  at fl,.. More  formally,  let R,, be any metric  quanti ty;  then it is 
expected that  

I n" if f l<fl , .  

R , , ( f l )~  n'" if f l=fl , .  
( n TM if fl > fl,. 

as n ~  oo (2.9) 

-~ It should be noted that the above only applies if H,, is divergent with increasing n {this 
occurs if ~t >0). If this does not happen (H,, is bounded as n- ,  ~), then the maximum in 
the specific heat may occur at a analytic point of the reduced free energy. If this is the case, 
then the transition is signaled by a cusp in the specific heat, and not necessarily at a maxi- 
mum. In the case of collapsing trees the numerical evidence will indicate that H, diverges 
with n, and thus ~ > O. 
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where v and v~ are the metric exponents in the expanded phase and at the 
(tri)critical point, respectively. 

The value of fl,. can be obtained from the metric data by considering 
the ratios Rk,,/R,, for k a fixed number (such that kn is an integer). It is 
seen from (2.9) that 

k" if r > 0  

R ~ , ,  k "  if r = 0  as n ~ o o  (2.10) 

R,, kl/d if r < 0  

for any fixed value of r. If one computes R,,(fl) over a range of fl and for 
a number of n-values and plots the ratios in (2.10) against fl, a family of 
curves is found which intersect, in the large n limit, close to tic. The R,,(fl) 
follows a scaling law similar to (2.6), namely 

R,,( fl) ,~ n '"h( n4' r ) (2.11) 

where h is a suitable scaling function [ h ( x ) ~ x  ~ ...... ~/~ as x ~  oo and 
h(x) ~ ( - x )  [~l/'n-'']/~ as x ~  - o o ] .  

3. LOCATING IZc AND q~ 

The scaling arguments in Section 2 produced the relations (2.7) and 
(2.8) involving ~b, ~, and tic. Numerical estimates for these quantities can be 
found by computing H,, and z,,. We do this by using a stochastic optimiza- 
tion algorithm, specifically of the Robbins-Monro type, ~zT~ which we imple- 
ment with the cut-and-paste Monte Carlo algorithm for lattice trees, t16~ 

3.1. Implementat ion 

We follow the implementation due to Kersting P-sl and to Glynn. 129~ 
Let PB be a family of probability distributions on the real line, indexed by 
a real parameter ft. Define the function 

M( fl) = ~. x P  /i(x) (3.1) 
X 

[ In  our case, P/~ will be the distribution of ( c - ( c )p . , , ) ' - ,  and 
M(fl)  = C,,(fl); see Section 3.2.] Assume that M(fl)  has a unique maximum 
at f l=f lc .  If M(fl)  is differentiable, then M'( f l c )=0 .  To find a root of M',  
consider Newton's method: 

M'(/t,) 
fl,+l =fli (3.2) 

M"(fli) 
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and we expect that fl~ ~fl,, as i--* oo. Since M(fl) has a maximum, we may 
assume that M"(fl,.)< 0. For large i, replace M"(fl~)~ M"(fl,.) by - 6 - ~ .  
Then (3.2) becomes 

f l ,+  t = fli + OM' ( f l , )  (3.3) 

Suppose that we cannot evaluate either M(fl) or M'(fl) in closed form, but 
we can get a Monte Carlo estimate Y~ such that 

E{ Yilfl,, ,6'2,..., fl~} = M'(fl,) (3.4) 

where E{SI T} is the conditional expectation of S given T. Then a 
reasonable value for fl~+t is fli+6Y~. However, Y; is in general a very 
"noisy" estimate of M'(fli); it therefore makes more sense to weight fl; by 
its corresponding relative sample size i, and the new estimate of fl;+t by its 
corresponding relative sample size 1. This gives the recursion which we 
actually use: 

fl~ + , = fl, + 6 Yi/( i + l) (3.5) 

If Yi is an unbiased estimator of M'(fl~), then (3.5) is the Robbins-Monro 
algorithm with one free parameter ~. In applications one tries to choose 
close to [M"(fl,,)[ -l.  The rate of convergence is 1/x/~, 129) except in rare 
cases (in other words, the Robbins-Monro algorithm attains the best 
possible Monte Carlo convergence rate). The convergence of the algorithm 
may be tracked by relying on Corollary 2 of [ref. 28]: Given a number of 
(fairly weak) conditions, then if 6p > 1/2, where p = [M"(fl,.)l r  then the 
random function 

~ 1  t,~, , v/~(flt;, 1 _fl,.) (3.6) fia 

converges weakly as i--* oo to the process W(t "-'~p-~) for 0 ~< t ~< 1, where 
W(t) is Brownian motion and where a2 is the variance of Yi(flc). Thus, 
provided that 8p > 1/2, fli will be asymptotically normal about tic, or from 
(3.6), if t=k/i,  

�9 k 2 & ~ -  1 

(2~p~l~k2~"i'-2a"Var(flk).~i2~p_t (l~<k<~i) (3.7) 

with the result that 

~20-2 
Var( flk ) ~ k(2Op - 1 ) (3.8) 
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The recursion [Eq. (3.5)] implies that 

320 .2 2 6 p -  1 
E{(fl~'-flt"-')2} ~ k'- k Var(flk) (3.9) 

So we conclude that Var(flk).~kE{(flk--flk_t)2}/(2cSp--1). During a 
simulation, c~ is an input parameter, and we can estimate the value of 
p=lM"(fl,.)J by estimating ([M"(fl,.)l) [ if  this is possible; in our case 
M(fl) = C,,(fl), so that p is the absolute value of the fourth cumulant of the 
contact number, which we can approximate in our simulation by estimates 
of the first four central moments of the contact number].  The expectation 
of k2(flk--i lk-I)  2 can similarly be estimated in order to approximate c$2a 2, 
and we can therefore obtain confidence intervals on ilk- 

3.2. Numerical Results 

Let (x)l~.,, be the canonical expectation of a measurable quantity x(c) 
which depends on the number of contacts c in a tree. From Eq. (1.1) we 
have 

(x(c))/~.,,=~,~t(fl) ~" x(c) t,,(c) e/~' (3.10) 
c >~O 

By Eqs. (1.2) and (1.3), the specific heat per monomer (for finite 17) is given 
by 

2 "~ 9 

C,,(fl)=(c )/j . , ,--(c)~., ,=((c-(c)/~,, ,)-)/~., ,  (3.11) 
n II 

That is, C,,(fl) is the second central moment of the number of nearest 
neighbor contacts. Every tree can be given an energy - c  and therefore an 
associated weight e/l'. Then the average of the contact energy is simply 
~ , ( p ) - -  - ( c ) / ~ . , , .  

The cut-and-paste algorithm for lattice trees ~6~ can be used to realize 
a symmetric Markov chain whose state space is the set of lattice trees with 
n vertices. If a Metropolis-style rejection of proposed states in the chain 
based on the relative weights of the states is added, then the algorithm will 
generate a sample of trees with partition function given by Eq. (1.1)/3~ 3~ 
The maximum in C,,(fl) can be obtained by the Robbins-Monro recursion 
by identifying C,,(fl) with M(fl) as defined in (3.1). Comparison with the 
recursion in (3.2) and (3.5) indicates that 

[(c-~)31/~ .... 
fli+~ = f l i + ~  (3.12) 

i + 1  
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w h e r e -  denotes the sample mean of simulated observations from the dis- 
tribution (.)/~,, ,,. Then the sequence fls should converge to that value of fl 
which maximizes the specific heat. There are two parameters and one initial 
guess in (3.12) which must be carefully chosen. These are ~, the number N 
of measurements done in estimating the third central moment, and the 
initial value flo. Ideally, ~ should be the inverse of the curvature of the 
specific heat at tic, but we cannot know this a priori .  Instead, we perform 
an initial run at a value of fl which we believe to be close to fl,. and we 
compute the curvature at this point. This estimate will be very uncertain, 
since it is the fourth cumulant of c; and practically, we found that we had 
to settle for a very rough estimate, or for any value which will give con- 
vergence. (The simulation was harder in two dimensions, and we had to 
settle for a value of ~ which is probably far from the optimal choice.) Note 
that if a guess for ~ is too small, then the convergence of the recursion will 
be slow, especially if flo is far from fl,.. The choice of N and of the number 
M of recursions of (3.12) results in a total of N M  iterations of the Monte 
Carlo algorithm. 

If this total is fixed, then there is a tradeoff between N and M. Empiri- 
cally, we found that good approximations to the third central moments in 
(3.12) are essential for convergence to take place. Therefore, in all our 
simulations, we fixed M = 5 0 ,  with N = 5  • 107, for a total of 2.5 • 10 9 

Monte Carlo iterations. Initial guesses were made by performing short runs 
for small trees to find a rough idea of the location of the peak. Subsequent 
guesses for larger trees are made by "boot-strapping" from the results for 
small trees. To remove bias in the estimates for the third central moment, 
we relaxed the simulation for 106 iterations between recursions of (3.12). 
The uncertainty in the resulting estimate of fl,. was computed using (3.9), 
where we approximate p by the Monte Carlo estimate of the fourth 
cumulant about the peak of the specific heat (this is also the curvature of 
the peak in the specific heat), and ~2a2 by the Monte Carlo estimate of the 
expectation E{k2(flk-flt,__l)2}, [ W e  ignored the first 40 recursions of 
(3.12) before we took data on the fourth cumulant and this expectation. At 
this point, we are close to the peak in the specific heat, and the fourth 
cumulant at the peak can be approximated by the Monte Carlo estimates 
of C',',(fli).] Once the algorithm is close to the peak, one can compute the 
height of the peak by taking the result of each iteration as an independent 
estimate (this is reasonable because the number of attempted MC moves in 
each iteration of the Robbins-Monro algorithm far exceeds the autocorre- 
lation time of the underlying cut-and-paste algorithm). We took the last 
ten iterations in each case and computed an average peak height. 

The sinmlations were performed for trees in two and in three dimen- 
sions. The evolution of fli is plotted in Figs. 2 and 3, and in Tables I and II 
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/J~(.) n=200 
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Fig, 2, 
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The evolution of fl~ in two dimensions under the Robbins-Monro iteration, 
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Fig. 3. The evolution of/J, in three dimensions under the Robbins-Monro iteration. 
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T a b l e  I. Robbins-Monro Results in Two Dimensions 

11 

,1 #,(.) /4,, C: ~ /J,, 

50 0.3885(2) 0.3020(24) 12.70(58) 0.333 0.400 
100 0.4817(50) 0.3783(30) 41.3(15) 0.200 0.500 
200 0.5672(48) 0.4527(60) 119(11) 0.100 0.550 
400 0.6209(64) 0.5307(90) 334(38) 0.100 0.600 
800 0.6468(88) 0.595(15) 839(130) 0.100 0.650 

1600 0.660(15) 0.655(16) 2020(360) 0.100 0.650 

we list the initial data and the results of the simulations. All the indicated 
error bars are 95 % confidence intervals. 3 

3.3. Estimating @, o, and 13~ 

The exponents ~b and ct and the critical value of fl in the n ~ ov limit 
can be extracted from the data in Tables I and II, assuming that the hyper- 
scaling relation 2 - c t =  1/~b holds. Equation (2.7) suggests that a log-log 
plot of H,, against n should be linear, but significant curvature is present 
in a plot of the data in Tables I and II. Consequently, a significant correc- 
tion to scaling must be present in the data. 4 

T w o  D i m e n s i o n s .  We first analyze our data under the assumption 
that ~ > 0. In other words, we assume that the specific heat diverges as a 
power law of n. If H,, = Con ~', then a linear least squares approximation, 
log H,, = log Co + b log n, gives a very large Z2-statistic and we conclude 
that the simple power-law assumption does not describe the data well. 
A modified ansatz H,, = C0n~'( 1 + D n -  ') (incorporating an analytic correc- 
tion) can be approximated by the linear relation log H , ,= lo g  Co+ 
b log 17 + D n  ~, and a linear least squares approximation gives Z3 ~ 10.5, 
which is not acceptable. If the data point at n = 50 is neglected, then 
Z~ ~ 3.3, which is a good fit. However, there is still a systematic error 

3 We will state all stat is t ical  error bars as 95% confidence intervals, unless we say explicitly 
otherwise. 

4 One can guess the significance of correction to scaling terms by keeping track of the 7, 2_ 
statistic when least squares analysis is done, assuming various scaling laws. We will accept 
a least squares fit if the Za-statistic is acceptable at the 95 % level. Otherwise, we will attempt 
to improve the situation by neglecting datapoints at the smallest value o fn  (where correction 
terms are expected to be importantl, or, if that fails, by changing the model. At the 95% 
level, a Z2-statistic with 2 degrees of freedom will have value at most 6.0; we indicate the 
number of degrees of freedom by a subscript: Z~, ~< 6.0 at the 95 % level. Similarly, g] ~< 7.8 
and Z.~ ~< 9.5 at the 95 % level. 
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Tab le l l .  R o b b i n s - M o n r o  Resu l t s i n  Three Dimensions 

n fl,.(n) H,  C~I 6 [1,, 

50 0.4425(9) 0.6563(171 58.9(11) 0.100 0.460 
100 0.4133(32) 1.0103(60) 288(11) 0.0667 0.400 
200 0.3910(541 1.444(11) 1196(68) 0.0500 0.400 
400 0.3734(84) 1.939(22) 4490(300) 0.0333 0.350 
800 0.367(11) 2.507(50) 14700(1500) 0.0250 0.350 

1600 0.341(2) 3.071(82] 44600(9600) 0.0200 0.350 

present, and we attempt to estimate this by neglecting the data point at the 
smallest value of n. 5 The good fit above produced b = 0.138 + 0.022, and if 
we take the difference in the estimated regression coefficients in the last two 
fits as a systematic error, then we get b =0.138 + 0.022 ___ 0.033, where the 
format is best value + 9 5 %  confidence interval +_systematic error. From 
Eq. (2.7) and the hyperscaling assumption, b = 2 4 ) - 1 ;  we get 

~b =0.569 + 0.011 _+0.017 (3.13) 

By substituting this value of ~b into (2.8), one can determine the value 
offl , .  However, a fit to ~,.(n)=tic+ Cn-* [with ~b =0.569 and where tic(n) 
is the value of fl corresponding to the maximum in the specific heat]  has 
a very large Z2-statistic, and we modify the model by including a term to 
take into account corrections to scaling. If we assume that tic(n)= 
fl,. + Cn -'~ + Dn -~ (including an analytic correction), then Z~ = 22.1, and if 
we neglect the data point at 50, then Z~ = 1.4, which is a good fit. We 
neglect yet another datapoint to estimate a systematic error. The result is 

fl,. = 0.693 _+ 0.023 -4- 0.022 (3.14) 

As a last check, we compute tic by taking values of ~b at its confidence inter- 
val limits. If ~b=0.541, then fl,.=0.694-+0.025 (Z~= 1.5) and if ~b=0.597, 
then fl,.=0.692-+0.023 (Z2= 1.4), where the data point at n = 5 0  was 
ignored. These values are well within the confidence intervals stated in 
(3.14), and we conclude that the uncertainty in ~b does not affect our 
estimate of fl,. in any significant way. 

Othor Assumptions. We now consider the possibility that H,, 
diverges with log n (which corresponds to ~ = 0 ) ,  and the possibility that 

5 Systematic errors are due to correction to scaling which are unaccounted for by our model. 
If we neglect the data point where this error is likely to be most significant (the smallest 
value of i1) and repeat the fit, then the absolute difference between the computed regression 
coefficients will be taken as a systematic error. 
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H,, is finite as n ~ ~ (this corresponds to the case that 0c < 0). The value 
of b estimated above is close to zero, and we expect that an assumption 
that H,,= Clog  n + D will not be unreasonable. A linear least squares 
approximation gives X4 "~ 10.19, which is not acceptable. If  we ignore the 
data point at n = 50, then we obtain X.~ ~ 6.7, which is acceptable at the 
95 % level. Thus, we are unable to rule out this model from the data corre- 
sponding to the heights of the peaks in the specific heat. If  we instead 
assume that H,,=H~,_ +An -~/2 (corresponding to $=0 .25) ,  then a least 
squares approximation gives X] ~ 340 and if the data point at n = 50 is 
ignored, X.~ ~ 65. Both these are ruled out at the 95 % level. Smaller values 
of $ give increasingly worse fits, and the situation improves as $ increases 
to 0.5 (where 0c = 0). 

Three Dimens ions .  As in two dimensions, we first analyze our 
data under the assumption that H,, diverges as a power of n. A power law 
assumption H , =  Co n~' has X2-statistic very large, and we conclude that 
corrections to scaling must be taken into account. If log H,, = log Co + 
b log n + Dn-~, then the z<statistic is still too large, and we neglect the 
data point at 17 = 50 in the next fit. This gives X~ = 4.2, which is a good fit. 
If  we compute a systematic error by neglecting yet another term, then our 
estimate for b is b = 0.307 + 0.020 + 0.030. Thus 

= 0.654 + 0.010 + 0.015 (3.15) 

The critical value of fl can be obtained as before; if $ = 0.654, then 
fl,=O.333+O.O12, X~ ~4.8,  and if the data point at n=50  is discarded, 
then fl,.=0.326 +0.020, X~ ~ 3.9. When $ takes values at its confidence 
limits, then fl,.= 0.334 + 0.012, X.~ ~4.9,  i f$  =0.679, and fl,.= 0.332 + 0.012, 
Z3 ~ 4.7, if $ = 0.629. Estimating a systematic error as before, we find 

fl,. = 0.333 + 0.012 + 0.007 (3.16) 

Other Assumptions.  An assumption that H,, = C log n + D gives 
very large X2-statistic, even if we ignore the data point at n = 50. If we add 
an analytic correction and assume that H,, = C log n + D + Fn-  ~, then 
Z3 ~ 10.2, which is not acceptable. Ignoring the data point at n = 50 gives 
X_~ ~ 1.3, which is acceptable. Thus, this ansatz is not inconsistent with our 
data. An assumption that H,, = Hr~_ + An t/2 gives large Z 2 statistics, which 
gets larger with decreasing values of $, but the situation improves as 
approaches 0.5. 

D i s c u s s i o n .  The curvature C',', of the specific heat peak may be com- 
puted by taking the second derivative of (2.6) at fl,.. Hence, C',', ~ n  ~+2~', 
and by taking the fourth cumulant of the contact number, one may estimate 
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p = ~b + 2~b. The measured values for the curvature are listed in Tables I 
and II. By hyperscaling, 2~b- 0~ = 1, and one may compute ~b in an alter- 
native manner  [ ~ b = ( p +  1)/4]. A three-parameter assumption log C',',= 
A + p  log n + B/n gives p = 1.329 ___ 0.082 with X~ ~ 1.1, and if we ignore the 
data point at n =50,  then we get p = 1.275 _+0.156, Z~ ~0.4,  in two dimen- 
sions. Taken together, our best estimate is/~ = 1.329 _+ 0.082 _ 0.054 in two 
dimensions. In three dimensions we obtain p = 1.719 _ 0.066, Z.~ ~3.7,  
and if the data point at n = 5 0  is ignored, then p = 1 . 6 2 8 _ 0 . 1 3 2 ,  
Z~ ~ 1.1. Thus p=1.719_+0.066_+0.092 in three dimensions. Assuming 
hyperscaling, one gets ~b = 0.582 _+ 0.021 _+ 0.014 in two dimensions and ~b = 
0.680_ 0.017 +_ 0.023 in three dimensions. These estimates are completely 
consistent with (3.13) and (3.15). On the other hand, by solving for ~b 
and ~ from b and p, one may obtain estimates for ~b which do not rely on 
hyperscaling. Solving directly gives c k = ( p - b ) / 2 .  In two dimensions, 
~b = 0.596 _+ 0.10, and in three dimensions, ~b = 0.71 _+ 0.11. The uncertainties 
in these estimates are large, but the results are consistent with (3.13) and 
(3.15), and there seems no reason to believe that hyperscaling should be in 
doubt  (the large error bars in these estimates are due to the uncertainty in 
estimating p from fourth cumulants). Therefore, we assume that (3.13) and 
(3.15) represent the best estimates for 4, modulo hyperscaling. 

Estimates for the specific heat exponent ~ may be obtained from b and 
~b. We found ~ = 0.24 +__ 0.11 in dimensions (excluding 0 by two error bars), 
and ct = 0 .47_ 0.10 in three dimensions (excluding 0 by at least four error 
bars). 6 It is important  to note that one arrives at these values by assuming 
that the transition is second order with a divergent specific heat, and that 
we then get answers consistent with our assumption. While there is some 
circularity in this process (if we assume that a > 0, then ~ = 0.24 > 0 in two 
dimensions, and a similar result in three dimensions), we should note that 
the assumption that ~ = 0  (H,, ~ log n) also gives a consistent (albeit cir- 
cular) analysis. However, the belief that the transition is second order with 
a divergent specific heat is supported to a significant extent by the fact that 
the estimated values of ~ exclude 0 by such a wide margin. 

4. U M B R E L L A  S A M P L I N G  

The Robbins-Monro  procedure is designed for the sole purpose of 
pinpointing the maximum of the specific heat curve C,,(fl). Apart from 
gaining information on the specific heat close to the critical value of fl, we 

~' Note that these error bars contain contributions from the systematic errors estimated in t~ 
and b. The 95"/0 confidence intervals (which are due to the statistical errors in ~ and b) on 
~t are smaller than the stated error bars here. 
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do not get any other information which will describe the true nature of the 
collapse transition; for that, we need to graph C,,(8) for a wide range o f f ,  
and in particular in the general vicinity of the scaling region. In addition, 
we do not have information about the metric behavior of trees as 8 changes 
through the critical--value this characterizes the collapse transition (the 
specific heat only gives thermodynamic information). Thus, we would also 
like to obtain information about the behaviour of the radius of gyration 
R,,(8) as 8 changes through its critical value. 

4.1. Background and Implementation 

A naive Monte Carlo approach would be to perform a set of inde- 
pendent simulations at several values of 8, followed by an interpolation on 
the data. Despite the simplicity of this approach, there are several 
methodological difficulties, including the poor behavior of the Monte Carlo 
algorithm in the collapsed regime, characterized by very long autocorrela- 
tion times. This is due to "quasiergodicity": the tree falls into conforma- 
tions which are essentially "frozen" for many iterations due to the strength 
of the attractive interactions. 

An alternative Monte Carlo solution is umbrella sampling. < 17. 321 Let T,, 
denote the set of n-site trees (modulo translation). For a tree o9~ T,,, let 
c(og) be the number of nearest neighbor contacts of co. Let 

ply. ,,(co) = ~,,(fl) (4.1) 

be the probability distribution on T,, for given 8- Next, let n be some 
positive function (measure) on T,, [which assigns weights n(og) to each tree 
o9] and let .~, :=Z+~ r,,n(~) be the associated normalizing constant [or 
partition function as in Eq. (1.1)]. In practice, we choose n to be easily 
computable, but it will be too hard to compute .~, exactly. 

Let X 1, X z .... be the Markov chain obtained by implementing the 
Metropolis algorithm with respect to the weights n(-), using the cut-and- 
paste tree algorithm as the underlying symmetric Markov chain for the 
proposed moves. Then the equilibrium probability distribution for X; is 
n / ~ .  (We assume that a sufficiently long initial section of the chain has 
been discarded to ensure that the remaining observations are in equi- 
librium.) For any function f on T,,, let 

1 k f (X i )  el~c~x,i (4.2) 

822/86] I-2-2 
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Observe that 

/f(X,) /~,,(x,)\ 

y. f(o)) el~,.,,,, ~ n(w) 

The ergodic theorem further implies that 

. ~. & ( P )  
= <,J)t~.,, ~ (4.3) 

&(P) 
lim Sk[ f ;  ]3] = (f) /~. , ,  ~ 

k ~ , ~  
(4.4) 

with probability one. Now define the ratio estimator 

Sk[ f ; f l ]  Z~=, [f(Xi)/re(Xi)] e/~"Ix" 
Rk[ f ; f l ]  .-- Sk[1;fl ] -- Y'.~=, [1/rt(Xi)] e/t''x'' 

Then (4.4) implies that 

(4.5) 

lim R k [ f  ; fl] = ( f )  /~.,, (4.6) 

with probability one. Thus, for any observable f,  we can (in principle) 
estimate ( f ) /~ . ,  for eveo, fl using data from a single simulation run. Of 
course, this is only really true in the n ~ ~ limit; one cannot expect these 
estimates to be uniformly good for all ft. But one can hope that for a 
judicious choice of n, one can get good estimates simultaneously for all fl 
in some reasonably large interval. Thus, we intend to choose n such that 
a wide range of interesting distributions are covered; n is therefore called 
an "umbrella distribution." 

The basic approach, then, is to sample from an artificial distribution 
and reweight the data [as in (4.2)] to get a valid estimator that is (hope- 
fully) more efficient than the natural estimator (i.e., sampling directly from 
the distribution of interest). This idea, known as importance sampling, is a 
classical method of Monte Carlo variance reduction, c29~ Umbrella sampling 
in statistical mechanics was pioneered by Torrie and Valleau) ~7~ Our 
implementation has also been called "temperature scaling" (since we 
reweight by distributions corresponding to a common Hamiltonian with 
different temperatures on a single configuration space), as opposed to 
"density scaling," for example) 32~ 

A special case of umbrella sampling is when n(og)=exp[floc(og) ] for 
some fixed value flo. This approach has been implemented for Ising and 
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Potts models by Ferrenberg and Swendsen t33" 34) and it has also recently 
been employed to estimate likelihood functions in statistics. (35) Another 
special case, somewhat more general, is when n is a convex combination of 
several fixed-temperature distributions: 

n(og)= ~ 2;p/~,,,.,,(a~) 
"~n i = l  

(4.7) 

where 21 ..... 2, are positive numbers that add up to 1. This choice has an 
intimate connection with the method of "simulated tempering ''(36~ that is 
explored in ref. 37. Simulated tempering was developed independently by 
Geyer and Thompson 138~ in the context of statistical inference. The main 
idea of (4.7) is that if some fl"~ are in the collapsed regime and others are 
in the expanded regime, then the system will not get stuck in a collapsed 
configuration (typical of large r )  because a lot of the sampling is performed 
as if the system had fl < tic. Thus the Markov chain is expected to have 
manageable autocorrelation times. Also, since a significant fraction of the 
sampling is performed as if the system had fl=fl"~, one expects that the 
data would give good estimates for ( f ) a , , , . ,  for each i. Some rigorous 
results that help to support this intuition are presented in ref. 37. 

In the simulated tempering scheme, one is always constrained to the 
form (4.7). However, in the general framework of umbrella sampling, there 
is no such restriction. One can choose an arbitrary distribution n and use 
short Monte Carlo runs to refine rc so as to improve the "mixing rate" of 
the Markov chain. [We note that simulated tempering also requires some 
short initial runs to get crude estimates on ratios of the ~,,(fl"~).] As is 
natural, we restricted our attention to weights zt(co) that depend on o9 only 
through c(o9) (i.e., through the energy of co); formally, there is a function 
re' from {0, 1 ..... ( d -  1)n} to [0, + o r )  such that 

rc(og) = ~z"(c(oo)) (4.8) 

[Note  that ( d - l ) n  is an upper bound for the maximum number of con- 
tacts in an n-site tree in Z a.] 

One useful guideline in choosing an umbrella distribution is to aim for 
a n which'makes the distribution of energy (number of contacts, in our 
case) uniform over a wide range of values. This should accomplish two 
things: (i) It makes for a rapidly mixing Markov chain by removing the 
(physical) energy barriers that create regions of metastable configurations 
in the physical system (also called quasi-ergodic barriers); and (ii) it gives 
good estimates for any distribution p/~.,, that puts most of its weight in the 
energy range "covered" by the umbrella 7L 132"37" 39) In the present project, 
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we used three different methods for getting initial umbrella distributions for 
different values of n: 

(I) Monte Carlo runs at different fl values. Fix ff'~ ..... ff"~, and do r 
short, independent runs (one for each P/t,,,.,). For each pair i, j ~  { 1 ..... r}, 
obtain an estimate 2 ; . j  of the ratios ~,,(flu~)/~,,(ffi~). (There are several 
ways to do this. One crude way is by our estimator Sk[1;fl  u~] with 
r t=exp(ff~c) ;  see also refs. 33 and 40 for more thoughtful approaches.) 
Then, for some choice o f j E  {1 ..... r}, set 

r 

2.  e/~''''~''~ (4.9) 
i = 1  

If the short runs are not too short, then this should be a good approxima- 
tion of the mixture (4.7) with 2 ; _  1/1" [and ~ ,  ~ r~,,,(flu~)]. Note that for 
implementation, we only have to compute and store the numbers 

�9 /J"~ ( 4 . 1 0 )  n"(k) = L 2~ .ie 
i = [  

for k = 0, 1 ..... ( d -  1 ) t7. This procedure worked well up to n = 400 in d = 2, 
but not at n = 800. 

(II) Series extrapolation. As in (I), fix f l ~  ..... ff"~, and aim for an 
umbrella of the form (4.7) with 2 i - 1/r. But instead of doing preliminary 
Monte Carlo work, we use exact enumeration for small values of n and the 
resulting extrapolation of the limiting reduced free energy ~ (ffi~). Then set 

x " (k )=  L en''~ .... ~/~"~ (4.11) 
i = 1  

for k =0 ,  1 ..... ( d -  1) n. Fortunately, the enumeration and extrapolation 
have already been done by Gaunt and Flesia. ~1~ (They only do the 
extrapolation for a discrete set of fl's, so we interpolated the results to get 
values at ff"~ that were not in this set.) This procedure worked well at 
n = 800 in d = 2, but not at n = 1600. 

(III) Histogram uniformization. At n =  1600 in d = 2 ,  methods (I) and 
(II) both gave poor  results. We followed instead a method of Valleau 1321 
which aims to create a distribution which will be uniform over a certain 
range of energies. This is done by dynamically adjusting 7~ during a short 
initial run. A long simulation at n = 1600 with an umbrella n0 obtained 
by method (II) did not give good estimates; in. particular, the energy 
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histogram HIST(k) ( = n u m b e r  of observed conformations with exactly k 
contacts) was decidedly uneven. This could be for one of two reasons: 
either the run was too short and HIST(k) still contained large fluctuations, 
or the umbrella no had been chosen poorly. Since our run was long, we 
believed that the second reason was the true cause; it is quite plausible that 
the extrapolations from (II)  were just not good enough for n =  1600. So 
how can we improve an umbrella? Observe that if the simulation is not too 
short, then we expect that HIST(k)/N~ Ct,,(k)n~o(k) (where N is the 
length of the run) for all k which are not too far into the tails of the 
distribution. With this reasoning, it is natural to try to improve on no by 
taking 

n~;(k) 
n';(k) := HIST(k) 

in the hope that the result would be uniform over all k that were not too 
far out in the tails. [ I f  HIST(k) is 0, then we set n'~'(k) equal to n;(k) .]  

4.2. N u m e r i c a l  Resul ts  

We generated data for the mean square radius of gyration R~,(fl) and 
the specific heat C,,(fl) over large intervals of fl which included our 
estimates of the critical values from Section 3 for n equal to 50, 100, 200, 
400, 800, and 1600. The performance of the algorithm worsened as n 
increased, especially in two dimensions. 

We at tempted to keep the amount  of computer  time spent on the 
umbrella sampling on the same order of magnitude as had been devoted to 
Robbins-Monro .  The main run for each umbrella distribution was either 
5 • 108 or 8 x 108 Monte  Carlo iterations, taking data every 1000 or 2000 
iterations, respectively. The time required for such a run varied from about 
10 to 80 hr on our workstation, depending upon the size of the tree. We 
estimate very roughly that about  3 months of C P U  time on an HP-730 
workstation were spent on the umbrella sampling simulations, including 
initialization and runs with poor  umbrellas that were eventually discarded. 
It is apparent  that better results could be obtained with longer runs. 

As a check, we compared our estimates of radius of gyration at fl = 0 
with those of Janse van Rensburg and Madras. ~6~ All estimates were com- 
pletely consistent within error bars (in fact the error bars in the present 
study are usually smaller). Our  methods for computing error bars are 
described in the Appendix. 

T w o  Dimensions .  For  n =50 ,  100, 200, 400, two large umbrellas 
easily covered a wide range of fl: from fl = 0 up to fl = 0.8, which was the 
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largest value of fl that we tried to analyze. For example, at n = 200, the first 
umbrella was based on nine regularly spaced fll~ values from 0 to 0.48; the 
second was based on nine regularly spaced values from 0.3 to 0.48. The 
overlap region could be used to doublecheck the validity of the simulations. 
We usually found that agreement was excellent on the overlap; in fact, the 
agreement frequently continued well beyond the overlap (especially for 
smaller n). We needed three umbrellas for n =800 and four for n = 1600. 
The agreement at overlaps was not always good for these larger n values, 
and we had to repeat the histogram uniformization process (III) more than 
once before a reasonably uniform histogram was obtained (see Section 4.1 ). 
In addition to examining the uniformity of the histograms, we also 
monitored the behavior of each simulation by checking the frequency with 
which large cut-and-paste moves were accepted, and by looking at the 
autocorrelations in the output (see Appendix). 

We plot the specific heat of trees in two dimensions in Fig. 4 as a func- 
tion of ft. The data exhibit a clear, albeit broad, peak, which increases in 
height, and whose location moves to larger values of fl as n increases. One 
standard deviation about the data (68% confidence intervals) is also 
plotted. The locations and heights of the peaks in the data are listed in 
Table III. The results are entirely consistent with the results obtained from 
the Robbins-Monro method (Table I), although the error bars for fl,. are 
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Table III. Umbrel la Sampling Results i n  
Two Dimensions 

11 fl,.(n) H,, 

50 0.378(131 0.30106(83) 
100 0.534(233) 0.384(121 
200 0.5611(301 0.4516(18) 
400 0.635(130) 0.5181(47) 
800 0.669(215} 0.5936(99) 

1600 0.699(62) 0.663(20} 

21 

considerably larger here. This is hardly a surprise, since only some of the 
umbrella sampling is spent in parts of configuration space that are 
weighted heavily near fl,.. [ Some of the error bars are disturbingly large in 
Table III; this is a combined effect of very broad peaks and the need to 
estimate fourth cumulants of c. We make no claim about error bars for our 
error bars for tic(n) in Table III, but we believe that they have the right 
order of magnitude.] The error bars for the peak heights H,, however, are 
more comparable with the Robbins-Monro error bars. 

We can analyze the data in Table III in exactly the same manner as 
was done with the Robbins-Monro data in Tables I and II to obtain inde- 
pendent estimates of the crossover exponent ~b and the critical value of ft. 
If we assume the form log H,, = l o g  Co + b  log n + Dn -~, with Co and D 
constants and b = 2q~- 1 by hyperscaling, then a least squares fit gives 
b = 0.160 + 0.012, X3 ~ 1.7. We estimate a systematic error by ignoring the 
data point at J7 = 50, obtaining b = 0.170 + 0.026, X_~ ~ 0.9. We take the dif- 
ference in these estimates as a systematic error, and find for 

= 0.580 __ 0.006 + 0.005 (4.12) 

in good agreement with (3.13). The critical value of fl can be computed 
exactly as before, but here a two-parameter fit proves adequate due to the 
large error bars; assuming that f l , (n)=fl , .+Cn -~, we find (by taking 
~b = 0.585), fl,. = 0.709 +0.012, X] ~ 1.6, and if we neglect the data point at 
n = 50, then fl,. = 0.754 + 0.082, X_~ ~ 0.33. At the confidence limits of ~b we 
obtain fl,. '- 0.700 + 0.011, x ; ~ l . 9  (~b=0.609), and tic 0.718+0.013, 

, ~  Za~  1.3 (~b =0.561). Thus, our estimate is 

fl,. = 0.709 + 0.012 + 0.045 (4.13) 

This result is close to the value obtained by the Robbins-Monro simula- 
tion. 
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The mean square radius of  gyration data are best used to compute the 
amplitude ratios in Eq. (2.10). Here we expect that 

- - - ,  J 2  ~ if fl=fl,. 
R~,(fl) ~2_~/, , if fl > fl,. 

(4.14)  

We plot the amplitude ratios in Fig. 5, which results in a family of cur- 
ves which intersect one another close to the critical point and may 
approach the step function in (4.14) as n increases. The family of curves 
approaches a number close to 2.4 as fl decreases, assuming a scaling form 
with a confluent correction R~,=An2"(1 +Bn-~t) ;  this suggests that the 
convergence in (4.14) should be as 22"+Cn -A if fl<fl,.. The confluent 
correction for lattice trees was estimated from data describing the span in 
ref. 16; using that value (0.915) and executing a least squares fit to our data 
at fl = 0 produces (we neglect the data point at n = 50 to guess a systematic 
error) 

v = 0.6370 _ 0.0022 + 0.0032 (4.15) 

with Z~ "~ 5.5. We have not taken into account the uncertainty in the value 
A in estimating (4.15), but a fit with A = 0.5 gives v = 0.6386 and with A = I 
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we get v=0.6368, both with acceptable Z2-statistics. These values are 
within the confidence intervals of (4.15), and we conclude that uncertainties 
in the value of zl gives an unimportant contribution to the systematic error 
in (4.15). 7 The best estimate for v is remarkably close to the values of v for 
lattice trees obtained elsewhere (see ref. 16 and references therein). 

The intersection in the family of curves is harder to determine. The 
three curves corresponding to n = 50, 100, and 200 intersect almost exactly 
in one point; if fl =0.69, then the values of the amplitude ratio are 2.1101, 
2.1086, and 2.1116, respectively, for n = 50, 100, and 200. Consequently, we 
take flc=0.69 and the value of the amplitude ratio 2.110. We estimate 
confidence intervals by comparing the data from n = 400 and 800 to these 
values and taking the largest differences. This gives confidence intervals of 
size 0.03 in tic and 0.03 in the exponent, from which we calculate v,,: 

fl,. = 0 .69_ 0.03 (4.16) 

v,. = 0.54 _ 0.03 (4.17) 

which includes the previously estimated values of fl,. [Eqs. (3.14) and 
(4.13) ] within the confidence intervals. 

T h r e e  D i m e n s i o n s .  With the two-dimensional work done, we had 
the benefit of hindsight and used method (II) of Section 4.1 in preference 
to method (I) for our three-dimensional work. For 17 =50,  100, 200, this 
worked fine, and two umbrellas were always enough to get good coverage 
from fl = 0 up to fl = 0.65 (note that fl,. is much smaller in three dimensions 
than in two, so we actually got farther into the collapsed regime in three 
dimensions than in two). For n ~> 400, we used method (III) as well. Two 
umbrellas eventually sufficed for n =400  and for n = 800. However, for 
n = 1600, we were unable to get credible results for fl > 0.43; in the end, two 
umbrellas were used for the reduced interval of fl's. 

The specific heat data for trees in three dimensions are plotted in 
Fig. 6. The peaks are narrower compared to two dimensions, and the loca- 
tion of the maximum decreases as n increases, in contrast to the results in 
two dimensions. We list the locations of the peak maximum and the 
heights in Table IV. Again, the results are consistent with the Robbins- 
Monro restilts of Table II (with larger error bars here), except for the 
Ht6oo, which is larger here than in Table II by about two error bars. 

7A fit with A =0.333 gives v =0.640 and with A = 3.000 gives v=0.636; both these values are 
within the stated error bars. In this study we sampled on large trees, and we expect that 
corrections to scaling will be unimportant at larger values of n. unless A is very close to 0. 
Since the available evidence indicates that A is not close to 0 (see ref. 16 and references 
therein), we do not expect A to play a signilicant role in the analysis. 
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Fig. 6. The specific heat in two dimensions as a function of ft. The data correspond to n = 50 
{[3), 100 (O) ,  200 ( ~ ) ,  400 I + ), 800 ( x ), and 1600 ( ~ ) .  

If we  assume again that log H,, = log C O + b log 17 + Dn - ~, then a least 
squares analysis  o f  the heights in the peaks  o f  the specific heat gives 
b = 0.36641 + 0.0084, but X3 is large, and this is not  a g o o d  fit. We  at tempt  
a second fit with the data point  at n = 5 0  left out  to obtain 
b = 0.312 __ 0.015, Z] ~ 2 . 5 ,  which  is a g o o d  fit. A third fit with a second 
data point  (n = 100) ignored gives b = 0.286 _ 0.038, and we conc lude  that 
(using the hyperscal ing relation) 

~b = 0.656 + 0.008 + 0.013 (4.18) 

Table IV. Umbrel la Sampling Results in 
Three Dimensions 

n fl,.( n ) H,  

50 0.4435(47) 0.6555{16) 
100 0.4124(45) 1.0084(24) 
200 0.3903(74) 1.4454(52) 
400 0.366(22) 1.949(27) 
800 0.369(63) 2.475(95) 

1600 0.352(19) 3.125(71) 
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which includes our  previous est imate in Eq. (3.15) within its confidence 
intervals. We can similarly est imate ilL.: Assume that  flc(n)=fl,.+ Cn-'l'; 
then a least square  fit gives (with ~ =0 .656)  f l c = 0 . 3 5 2 _  0.009, X3 ,~2.8, 
and at  the limits of  the confidence interval of  ~b we obtain  t i c =  
0 .353+0.009,  X 2 ~ 2 . 9  ( r  and  fl,.=0.352_0.009, X3 ~2-7  
(~b =0.650) .  We neglected the da ta  point  at n = 50 to obta in  f l , .=0.345 + 
0.015, X~ ~ 1.0. Thus,  our  best es t imate for fl,, is 

fl,. = 0.352 _____ 0.009 _____ 0.007 (4.19) 

which is barely inside the the confidence interval o f  (3.16). We note  that  the 
es t imate  0.333 f rom (3.16) lies outs ide the confidence interval  of  (4.19). 

The  mean  square  radius of  gyra t ion  da ta  are plot ted in Fig. 7 as a 
function of  ft. We observe a sharp  decrease in the size of  the trees, for larger 
n values, as fl is increased beyond  a certain value. The  ampl i tude  ratios are 
plot ted in Fig. 8 and provide  s t rong evidence for a collapse transition. The  
family of  curves all cross at  f l c = 0 . 2 9 + 0 . 0 1  where they have value 
1.74 ___0.01, es t imated as in two 2 dimensions.  The  family of  curves con- 
verges at fl = 0 as discussed in the case for two dimensions,  and we can 
est imate v by ext rapola t ing  the data,  using the value for the confluent 
correct ion obta ined  f rom span da ta  in ref. 16 (A = 0.736). We were not  able 
to obta in  a good  fit, even by neglecting da ta  points  at n = 50 and n = 100. 
An examina t ion  of  the residuals indicated tha t  the da ta  point  at  n = 800 
gives by far the largest  cont r ibu t ion  to the ;(<statistic, which suggests that  
this da ta  point  is an outlier. Neglect ing it gives Z~ ~ 4.4, which is a good  
fit, giving v = 0.4967 __+ 0.0011. However ,  the value of  A is very uncertain.  If  
we repeat  the fit with A taken  to be equal  to 0.5, then v = 0.5001 + 0.0014, 
and put t ing A = 1 gives X~_ = 8.4, which is not  a good  fit. 8 Taken  together,  
we have our  best es t imate as 

v = 0.4967 ___ 0.0011 ___ 0.0034 (4.20) 

This is consistent  with the generally accepted value of  0.5 for v. 14tl 
At the point  of  intersection in Fig. 8 we obta in  

tic = 0.29 ___ 0.0I (4.21) 

v,. = 0.400 _ 0.005 (4.22) 

The  value of  fl,. is considerably lower than  the values obta ined  in the 
R o b b i n s - M o n r o  s imulat ion or  in (4.19). However ,  we do not  wish to 

s A fit with zi = 0.333 gives v = 0.506 and with zl = 3.000 gives v =0.493; both values are within 
the stated error bars. 
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overemphasize the significance of this. It may well be the case that simula- 
tions at even larger values of n will produce estimates of fl,. that are closer 
together. Thus, the metric collapse is not far enough from the peak in the 
specific heat to be considered strong evidence against the transition being 
of second order. 

M e t r i c  Scaling. The scaling assumption for the mean square 
radius of gyration is R~,(fl)~nZ"hl(n'hr), where hi(x) is a suitable scaling 
function [-see Eq. (2.11)]. It is therefore not unreasonable to expect that a 
plot of R~,(fl) against nr will reveal the shape of the scaling function h~(x). 
We found, however, that correction to scaling tends to obscure h~(x), and 
it proved not practical to demonstrate the scaling of the mean square 
radius of gyration in this manner. Thus, we attempted to "cancel" the 
corrections to scaling by plotting the ratio R~_,,(fl)/R~,(fl) against n'/'r; since 

R~_,,(fl) ~ 22,, hl(24'nOr) 
R~,(fl) h~(n~r) (4.23) 

such a plot will reveal the ratio h~(U'x)/ht(x). These plots can give addi- 
tional support for the analysis in the preceding paragraphs, since we can 
choose q~ and fl,. independently in order to have the best coincidence (as 
measured by an "eyeball" test) of the curves for n = 50, 100, 200, 400, and 
800 in (4.23). Our best effort in two dimensions produces Fig. 9, with the 
choices 

fl,. = 0.69, ~b = 0.58 (4.24) 

i 

3, 
10 20 30 40 50 60 

n ~ T  

Fig. 9. Plot of R~,([3)/R~(fl) against n*r with fl,.=0.69 and ~)=0.58 in two dimensions. 
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Fig. 10. Plot of R~.,(fl)/R~,(fl) against n~r with fl,. = 0.29 and r = 0.66 in three dimensions. 

In three dimensions a similar analysis gives (Fig. 10) 

tic = 0.29, r = 0.66 (4.25) 

These results strongly support the assumption (2.11 ) and the analysis based 
on it. One can graph similar plots for the specific heat, but we found that 
corrections to scaling are so strong in that case that we cannot make inde- 
pendent estimates of r and fl,. from those data in a sensible way. 

5. C O N C L U S I O N S  

In this paper we have studied the collapse transition of lattice trees 
with the assumption that it is a second-order transition characterized by a 
divergent specific heat. The totality of our results strongly supports this 
view, but the exponent ~ is small enough that we cannot completely rule 
out the possibility that the specific heat may be divergent as a logarithm of 
the mass of the tree, or that the specific heat remains bounded. The 
evidence supporting our assumption includes two independent studies 
using two different methods (Robbins-Monro and umbrella sampling), and 
with the exception of the disparity in the location of the critical point in 
three dimensions, with completely consistent results. 

There are several other studies reported in the literature which are 
devoted to the collapse transition of lattice trees or lattice animals. In two 
dimensions, the crossover exponent has been found to be r = 0.657 _+ 0.025 
for lattice animals (transfer matrix ~4~) and r = 0.60 ___0.03 for lattice trees 
(exact enumerat iont~) .  It was also found that flc=0.5_+O.1 for lattice 
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trees. ~t~) (The uncertainties in these estimates were extrapolated from finite 
values of n, and are not 95% confidence intervals). The value of q~ as 
estimated in ref. 11 is consistent with our estimates, which are 0.569 + 0.028 
(Robbins-Monro simulation) and 0.580 +_0.011 (umbrella sampling). The 
locations of the critical point are also consistent; we obtained 0.693 ___ 0.045 
(Robbins-Monro)  and 0.709 + 0.057 (umbrella sampling). We can take a 
weighted average of these estimates to obtain our best values, shown in 
Table V. 

The estimation of the metric exponent at fl = 0 in two dimensions, 
using data from the umbrella simulation, gives a surprisingly good result: 
v = 0.637 + 0.006, which compares with the best current MC estimates for 
this exponent. ~ 161 We can also estimate fl,. from the metric data by estimat- 
ing the intersection of the family of amplitude ratios in Fig. 8, which we 
note is close the the values estimated by the Robbins-Monro and umbrella 
sampling simulations. This intersection of amplitude ratios indicates a 
change in the metric properties of the trees, and the fact that it is so closely 
correlated with the peak in the specific heat data can be taken as strong 
support for a second-order transition. We estimate the metric exponent at 
the critical point to be v,. ~ 0.54, while we know that it is 0.5 in the collap- 
sed phase. These results support the notion that the critical point is a tri- 
critical point with coexistence of three phases: an expanded phase with 
v ~ 0.64, a O-phase with v,. ~ 0.54, and a collapsed phase with v = 0.5. 

In two dimensions, the identification of collapsed animals with 
vesicles 14-~ gives q~ = 2/3 ~ 0.66. This value agrees closely with the Derrida 
and Herrmann estimate 141 (~=0 .657_0 .025)  for collapsing animals. In 
contrast to this, the collapsing tree crossover exponent is estimated to be 
about 0.58 [ref. 11 and our estimate (3.13)]. An important difference in 
these models is the nature of the collapsed phase; the animal models which 
are given a cycle fugacity generally collapse to section graphs (rich in 

Table V. Best Estimates 

Two dimensions 
[3,. 0.699 + 0.052 

0.579 + 0.O22 
ct 0.24_+0.11 
v, 0.54 -I- 0.03 

Three dimensions 
fl,. 0.346 + 0.017 

0.655 + 0.024 
ct 0.47-+0.10 
v,. 0.400 __+ 0.005 
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cycles), while the tree models have a contact fugacity and collapse to span- 
ning trees of compact regions of the lattice (see Refs. 19, 20, and 43 for a 
discussion of differences in a collapse to spanning trees and to section 
graphs (or "vesicles")]. In view of these results, and our own, we conclude 
that the value of the crossover exponent measured in any simulation will 
be determined by the nature of the collapsed phase. If the collapse is to 
spanning trees, then we expect $ ,~ 0.58, and if it is to section graphs, then 
$ ~ 0.66. This strongly suggests the existence of two collapsed phases, 
namely a spanning tree phase and a section graph (or vesicle) phase. 
Coexistence of these phases with the expanded phase of lattice animals 
(with exponents identical to those of lattice trees) occurs at a multicritical 
point, which is believed to be the percolation point. (43" 44) The mapping of 
a model of interacting branch polymers to the Potts model (45) has 
produced some predictions for various exponents. In particular, the cross- 
over exponent for collapse to spanning trees (this occurs in the so-called 
contact model) is predicted to be determined by the Ising critical point, 
which gives $ = 8/15 ~ 0.53. This is outside the confidence interval in our 
best estimate in Table V. On the other hand, the prediction for the metric 
exponent of the O-phase is v,.= 8/15 ~ 0.53, which is close to our result. 

There is a wide range of estimates for the crossover exponent in three 
dimensions. Lain ~8~ estimated that $ ~ 0.814 by a Monte Carlo simulation, 
while Chang and Shapir tg~ estimated $ ~  1, by exact enumeration. The 
exact enumeration study of Gaunt  and Flesia ~t) estimated $ = 0.82 +__ 0.03 
and, less precisely, flc = 0.35 __+ 0.30. (As above, these uncertainties are 
extrapolated from finite n data, and are not 95 % confidence intervals.) A 
study which related collapsing animals to surfaces gives $ =  1.146) Our 
results from the Robbins-Monro and the umbrella sampling data agree 
within their confidence intervals, so we combine them to arrive at our best 
estimates (see Table V). Our value $=0.655 +0.024 for the crossover 
exponent is considerably lower than the results stated above, and the 
agreement between our estimate f l , .=0.346+0.017 and the estimate in 
ref. 11 should be taken as a coincidence, since the latter has such a large 
confidence interval. It is less clear from these results that there are two 
values of the crossover exponent, determined by the nature of the collapsed 
phase (as we conjectured for two dimensions). However, these data 
suggests $ m 1 for a collapse to the section graphs. The results are less sure 
for a collapse to the spanning tree phase. We obtained $ ~ 0.66, but the 
studies by Lam ~8J and Gaunt and Flesia ~ suggests a value close to 0.80. 

We were again able to compute an accurate value for the metric expo- 
nent of the expanded phase, v = 0.4967 +__ 0.0045. This is in good agreement 
with the accepted exact value of 0.5. c4'~ The amplitude ratios intersect each 
other in Fig. 8 at tic ~ 0.29, which is slightly less than the best estimate we 
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have for the critical point from thermodynamic data in Table V. This dis- 
crepancy is not big, and with increasing n it is quite possible that the point 
of intersection may increase slightly to coincide with the value in Table V. 
On the other hand, we favor the results obtained from the metric data, 
since those signal the transition so clearly. There is a strong correlation, 
then, between the metric collapse and the divergence of the specific heat, 
exactly as we observed in two dimensions, and we interpret this as evidence 
for a second order transition. The value of the metric exponent at the criti- 
cal point is v,. = 0.400 ___ 0.005, and in the collapsed phase we expect v = 1/3. 
Our best estimate for vc excludes the value obtained by Stella et alJ 46) 

where the association of surfaces to lattice animals is conjectured to imply 
that v,. = 0.5. 

APPENDIX. STATISTICAL PROCEDURES 

The statistical procedures of Section 4 for estimating quantities and 
their error bars can be derived from the following standard situation. 
Suppose that Y~, Yz,..., Yk are observations from a stationary (time- 
homogeneous) random process. In our case, these are functionals 
Yi=g(X~) of a Markov chain Xt, X2 .... that has reached equilibrium. We 
estimate the mean (Y~) by the sample mean 

1 k 

E r, (A.X) 
i = l  

whose variance is given (asymptotically as k ~ ~ )  by 

1( ) 
Var(Yk)~ ~ Var(Y~)+2 Cov(Yt, Yi+~) (A.2) 

i = l  

In our case, Y~ will always be asymptotically normal (since Yi is always be 
a functional of an ergodic Markov chain), so our 95 % confidence interval 
for ( Y )  will be Yk + 28(Yk), where 8(Y~.) is the square root of an estimate 
for the variance (A.2), which we discuss in the next paragraph. 

There are several ways to estimate (A.2). The simplest way is by 
"batching":'divide the run into several long pieces, and assume (i.e., hope) 
that each piece is independent. Indeed, trying different batch sizes is one 
way to check for long autocorrelation times. Alternatively, one can use the 
methods of time series analysis to estimate each term in the sum on the 
right side of (A.2) for i up to some cutoff M, where M is chosen to be "suf- 
ficiently large" (see Appendix C of ref. 47 for discussion). We used slightly 
different methods at different times in the present study, but we regularly 

822/86/I-2-3 
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checked our error bars by running two methods on the same data (usually 
the batching was done as a check on the time series). Moreover, we looked 
at the behaviour of the estimates of Cov(Y,  Yi+~) for i>~l until these 
estimates became indistinguishable from 0 due to noise (one sign of this is 
a balanced number of positive and negative estimates); this helped con- 
vince us that our choice of M was indeed large enough. The covariances 
often decayed very slowly, which could be due either to slow mixing or to 
a reweighting of the umbrella sampling data that put most of the weight on 
a small fraction of what was observed. If the decay was too slow, then we 
would try another umbrella distribution, as described in Section 4. 

Observe that for any function f on the set of trees T,, and any fl the 
estimator S k [ f ;  fl] defined in Eq. (4.2) is of the form (A.I) with 

y f ( Y i )  I~,.( v,, i = - e  " (A.3) 
rr(X~) 

Moreover, let 

e [ f ; f l ]  = S , [ f ; f l ] - < f >  - -  (A.4) 

then e[f;ff__] is asymptotically normal, with mean 0, and has magnitude of 
order 1/x/k.  Therefore, we can approximate R k [ f ;  fl] [see Eq. (4.5)] using 
a Taylor approximation and neglecting terms of order 1/k, as follows: 

Rk[ f ; fl] -- ( f >  l~, ,, ( ~,,,(fl)/a~) + e k [ f  ; fl] 
~,,(~)/& + ~[ 1; p] 

"~<f>l~'"+ ~7,(~) ek[f;fl] ~,,(fl) <J'>l ~'''gk[1;fl] 

& 
= <f>l~.,, +,-7S~,o~ r  < f>/~.,,; fl] 

, : z ,Ap l 
(A.5) 

Therefore, for error bars on our estimate of ( f ) t ~  .... we obtain # (Rk[ f ;  fl]) 
by applying the above time series methods to the second term in the last 
line of (A.5), i.e.,to Yh. with 

eft,.( .% ) 
y, = .o~.,~ ( f ( X , ) -  < f >  (A.6) &(p~ ~" ") ~(x,) 
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but in practice we cannot evaluate this exactly, so we instead perform the 
time series analysis on its approximation: 

1 ea,.(x,) 
Y, - -  ( f (Xi)  - -  R k E f  ; t ] ) - -  (A.7) 

Ski I; t ]  Tt( Xi) 

Our error bars on the specific heat estimates in Section 4 are obtained this 
way, with f ( X )  = (c(X) - Rk[ c; t ]  )2 ~ (c(X) -- ( c)/j. ,)2. 

The error bars on our estimates of t,.(n) in Tables III and IV in 
Section 4 also come from a linearization, but the derivation is a bit more 
subtle. We estimate t,.(n) by ilk, which is the value o f t  that maximizes our 
estimate of the specific heat; i.e., flk maximizes Rk[ f ;  fl], where 

f (  X) = f (  X, t )  = ( c( X) - R,[  c; t ]  ) ~- (A.8) 

Let 

d 
Uk[f; t ]  = 7~ Rk[ f ;  t ]  = Rk[c f  + f ' ;  t ]  -- R~.[f; t ]  Rk[c; fl] (A.9) ap 

where f '  = df/d t (to obtain (A.9), we use dSk [ f ;  t ] ~dr = Sk [ c f  + f ' ;  t ] ). 
The definitions now imply that 

0 = U~[f; ilk] (A.10) 

where f is given by Equation (A.8) with t= /qk .  To derive approximate 
asymptotics for the error/~k--t,.(n), we linearize Eq. (A.10) at t =t, .(n): 

d 
0 ~ Uk[f;  tic(n)] +--;x, Uk[f;  t,.(n)](/~k -- t,.(n)) ap 

(A.II) 

which leads to 

fl~. -- fl,.(n) ~ Uk[f; ti,.(n) ] (A.12) 
(d/dti) Uk[ f ; fl~(n)] 

For general f ,  one can compute 

d 
--;:, Uk[f;  fl,.(n)] = Rk[c2f  + 2cf' + f " ;  fl] - -2Rk[c f  + f ' ;  fl] Rk[c; fl] ap 

+ 2Rk[f ;  ti] Rk[c, f l]- - -  Rk[ f ;  fl] Rk[c-; fl] (A.13) 
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For our choice o f f  in Eq. (A.8), one can routinely check that 

f ' =  2(c-Rk[C; '8])(Rk[C; ' 8 ]2-  Rk[c2; fl]) 

Rk[f ' ;  '8] = 0 for every fl 

and 
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(A.14) 

Y, = ( c( X , )  - R A  c; '8] )3 _ _  
eft,.(xl) 

(A.19) 
~(X;) 

So the usual methods can now be employed to obtain #(Uk[f; '8]).  
Finally, then, the approximate 95 % confidence interval for '8,(n) is 

t~k§ a(Uk[f; f ik])  (A.20) 
- (d/d'8) U,.[f; fik] 

where the denominator is evaluated using the right-hand side of (A.16) at 
P=L. 

so Uk[f; '8] is of the basic form Yk with 

Rk[f,,; '8] = 2(Rk[ C2; fl] _ Rk[ C; '8] 2)2 (A.15) 

Therefore 

d 
-~  Uk[f; fl] = Rk[(C-- Rk[C; fl] )4; '8] - -  3 , R k [ (  C _  Rk[C; '8] )2; ' 8 ] 2  (A.16) 

and as k--, c~ this converges (with probability one) to 

d 4 
((C--(C)/~., ,)4)/~., ,--3((c--(c)l~., ,)2)~., ,=-'~10g~,,( '8) (A.17) 

Therefore, assuming that the expression in (A.17) is nonzero, we can 
estimate the denominator of (A.12) by the expression of (A.16) evaluated 
at '8 =ilk' NOW, the numerator of (A.12) is 0 at ,8 =/~k by definition [recall 
(A.10)], but we can still proceed. Equations (A.9) and (A.14) imply that 
for our choice off,  

Uk[ f  ; '8] = Rk[ ( C -  Rk[ C; '8] )3; '8] (A.18) 



MC Study of O-Point for Collapsing Trees 35 

Remark. The second half of this Appendix is an adaptation of the 
standard proof of the symptotic normality of the "maximum likelihood 
estimator" in statistics [see, for example, Section 9.2(iii) of Cox and 
Hinkley~48~]; an application in a very similar context is in Theorem 7 of 
Geyer in ref. 49. We are grateful to Charlie Geyer for telling us about this. 
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